Kenniscentrum Techniek

Data mining in MRO

Verslag

Data mining seems to be a promising way to tackle the problem of unpredictability in MRO organizations. The Amsterdam University of Applied Sciences therefore cooperated with the aviation industry for a two-year applied research project exploring the possibilities of data mining in this area.

Researchers studied more than 25 cases at eight different MRO enterprises, applying a CRISP-DM methodology as a structural guideline throughout the project. They explored, prepared and combined MRO data, flight data and external data, and used statistical and machine learning methods to visualize, analyse and predict maintenance. They also used the individual case studies to make predictions about the duration and costs of planned maintenance tasks, turnaround time and useful life of parts. Challenges presented by the case studies included time-consuming data preparation, access restrictions to external data-sources and the still-limited data science skills in companies. Recommendations were made in terms of ways to implement data mining – and ways to overcome the related challenges – in MRO. Overall, the research project has delivered promising proofs of concept and pilot implementations

Reference Pelt, M., Apostolidis, A., de Boer, R. J., Borst, M., Broodbakker, J., Jansen, R., Helwani, L., Patron, R. F., & Stamoulis, K. (2019). Data mining in MRO. Hogeschool van Amsterdam, Faculteit Techniek. https://www.amsterdamuas.com/binaries/content/assets/subsites/aviation/data-mining-in-mro/data-mining-in-mro---publication-auas-2019.pdf?1559025759404
Published by  Kenniscentrum Techniek 1 February 2019

Publication date

Feb 2019

Author(s)

Asteris Apostolidis
Robert J. de Boer
Maaik Borst
JJonno Broodbakker
R. Jansen
Lorance Helwani
Roberto Felix Felix Patron
Jonno Broodbakker
Ruud Jansen
Roberto Felix Patron

Publications:

Research database