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Executive Summary 

The peaks in electricity demand for charging electric vehicles (EVs) correspond with the peaks of household 

electricity demand. As the number of EVs will increase, the demand for electricity at these peak moments 

will increase even further. Research on public charging infrastructure, shows that the charging time of EV’s 

(the time EV’s are connected and charging) is on average 20% of the total connection time. This suggests a 

high potential for smart charging which can be unlocked by e.g. rescheduling the charging sessions 

optimizing for the grid while meeting the demand of EVs at the same time. 

The focus of this research is to develop a methodology to assess the potential for smart charging and suggest 

possible smart charging strategies. Based on the start time of a charging session and the total connection time 

three main user categories are defined for which the smart charting potential is determined. Based on this 

research, we can conclude that approximately 40% of all charging sessions start between 16:00 and 20:00, a 

category that has a smart charging Potential of 75% or higher. 
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1. Introduction  

Adoption of electric vehicles (EVs) will have a direct impact on the electricity grids via additional demands 

at current peak hours. For the Netherlands, previous studies have shown that an instant replacement of the 

current car fleet (non-EVs) by EVs given the current mobility pattern will lead to an increase of 23% in the 

total annual electricity demand. Furthermore, the peak load will even rise by up to 43% [1]. The majority of 

this demand will occur via the low-voltage grid connections (i.e. public and private charging points). The 

low-voltage grid has its limitations in terms of power flows and its capacity. In some areas it will not be able 

to cope with the additional demand by EVs which will most probably happen at the current and existing peak 

times on the grid. smart charging of EVs offers an alternative for better managing and incorporating the 

additional electricity demand of EVs within the existing power system. Smart charging can be defined as 

follows; optimizing the charging session by alignment of (i) time, (ii) speed, (iii) direction, and (iv) charging 

method with the EV-user’s preferences, given electricity market and grid conditions.  

The concept of smart charging has been tested in several contexts and pilots [2]. Results from most recent 

experimental projects confirm that controlled charging of EVs can work in practice both at public and home 

charging stations. Regarding smart charging at public chargers; the outcomes of a pilot project which took 

place in Amsterdam (FlexPower) show that on average charging rate of EVs was increased by 45% (from 

4.05 kW to 5.86 kW) outside peak hours while reducing the charging power during the peak moments [3].   

The results from FlexPower project are mainly applicable to the situation of Amsterdam. The main objective 

of this research is to provide insights in the smart charging potential (SCP) of EVs at public charging points.  
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In the Netherlands the majority of electric vehicles are Battery Electric Vehicles (BEVs) and Plugin-Hybrids 

(PHEVs) as can be seen in figure 1. Although the PHEVs are dominating the market, the number of BEVs 

has more than doubled in 2018. Although the EV sales are rapidly increasing in the Netherlands, a small 2% 

of passenger vehicles are EVs. The ambition of the Dutch government is to increase the number of EVs up 

to 2 million by 2030 [4]. Assuming that the current charging behaviour will be adopted by 2 million EVs, the 

electricity grid will not be able to cope with such power demand in many areas. Therefore, demand side 

management solutions such as smart charging will be needed.      

 

 

 

Figure 1. The number of  EVs in the Netherlands.  

This figure is based on data from The Netherlands Enterprise Agency (www.rvo.nl). 

 

In order to successfully apply smart charging, an understanding of its potential is necessary. In this study a 

methodology is proposed to assess the SCP of EVs. 

 

  

http://www.rvo.nl/
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2. Data and Methodology 

This section includes background information regarding the input datasets and elaboration on the several 

dimensions that we have looked at in order to quantify the smart charging potential.    

2.1 Dataset structure  

In this research we have analysed one of the largest databases of charging sessions on public charging 

infrastructure available worldwide. The dataset covers a significant part of the Netherlands and contains data 

on both rural and urban areas. The dataset used for this research consists of two major datasets. First the 

EVnetNL charging data, with charging sessions from  nationwide network of charging points. Second the G4 

/ MRA-Electric1 (MRA-E) data from urban areas including the four large cities of Amsterdam, The Hague, 

Rotterdam and Utrecht and the Metropolitan Region of Rotterdam (MRR2). For this study, data from the 

years 2015 and 2016 is used. In those years, the EVnetNL dataset contained 605.440 charging sessions by 

33.907 unique RFIDs at 1.538 charging stations. The G4 / MRA-E dataset contained 2.177.351 charging 

sessions by 56.988 unique RFIDs at 4.428 charging stations. An summary of the data is shown in table 1. 

 

Dataset Regions Charging sessions Unique RFIDs Charging stations 

EVnetNL Noord Brabant 

Gelderland 

Other 

605.440 33.907 1.538 

G4 / MRA-E Amsterdam 

Den Haag 

Rotterdam  

Utrecht 

MRA-E 

MRR  

2.177.351 56.988 4.428 

Table 1. Summary of data used in this research. The data contains two dataset spanning different regions in the 

Netherlands. 

 

The dataset used in this research contains charging sessions with a connection duration up until 24 hours. 

Although in reality there are charging sessions that have a longer connection duration, these sessions are rare 

and considered to be outliers..  

2.1 Methods 

Based on the historical charging events the charging behaviour is explored to quantify the SCP. The SCP is 

defined by the ratio of charging time and connection time. Connection time is the duration whereby an EV 

is connected to a charging point. Charging time is the portion of connection time where active energy transfer 

is taking place. Figure 2 includes a schematic decomposition of connection time into charging time, and SCP. 

So, SCP here is a measure of flexibility to postpone a charging event.    

                                                        
1 MRA-E includes of the provinces of Noord Holland, Flevoland and Utrecht and excludes the city of Amsterdam. 
2 MRR includes Albrandswaard, Barendrecht, Brielle, Capelle aan den IJssel, Delft, Gouda, Hellevoetsluis, Kaag en 

Braassem, Krimpen aan den IJssel, Lansingerland, Leidschendam-Voorburg, Maassluis, Midden Delfland, Nissewaard, 

Pijnacker-Nootdorp, Ridderkerk, Rotterdam, Schiedam, Vlaardingen, Voorschoten, Wassenaar, Westland and Westvoorne. 
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Figure 2. Schematic definition of smart charging potential   

 

In this study the definition SCP as shown in figure 2 is explored in various dimensions. First a distinction is 

made between the different user types and their SCP. The data used for this study contains charging 

sessions of regular users, charging sessions of taxis and car sharing schemes. The second dimension 

considered in this study is the EV type. For this dimension a distinction is made between BEVs and 

PHEVs. The third dimension considered in this study is the level of urbanity. Statistics Netherlands (CBS) 

categorizes regions in one of five levels of urbanity based on the number of home addresses per square 

kilometre. Level 1, the highest level of urbanity, is attributed to regions with more than 2.500 addresses per 

square kilometre. Level 5, the lowest level of urbanity, is attributed to regions with less than 500 addresses 

per square kilometre.  

 

2.1.1 Charging sessions for different user type 

The dataset used in this study contains four main categories of EV users: regular users, taxis, car sharing 

schemes and electric buses used in public transport. The number of sessions for each user type is shown in 

table 2. A small percentage of charging sessions (4.8% and 2.4% for G4 / MRA-E and EVnetNL respectively) 

cannot be attributed to a specific user type due to lack of information. As can be seen in table 2, the two 

datasets show differences in the share of taxis and car sharing schemes. These two user categories are mainly 

present in urban areas which are part of the G4 / MRA-E dataset.  

As can be seen in table 2 regular users contribute to the majority of charging sessions (95.8% and 99.9% for 

G4 / MRA-E and for EVnetNL respectively). Due to the relatively small contribution of other users, a 

comparison of the SCP for the different user types is not looked into further in this study.  

 

G4 / MRA-E        

User type  Sessions Percentage  User type  Sessions Percentage 

Regular 

Taxi 

Car sharing 

Public transport 

Unknown 

1991431 

68835 

17455 

229 

99401 

95.8% 

3.3% 

0.8% 

0.0% 

4.8% 

 Regular 

Taxi 

Car sharing 

Public transport 

Unknown 

591657 

350 

30 

0 

13403 

99.9% 

0.1% 

0.0% 

0.0% 

2.3% 

Total 2177351 100%  Total 605440 100% 

Table 2. The number of charging sessions for the different user types for both datasets.  
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2.1.2 Charging sessions for BEVs and PHEVs 

The dataset used for this study does not contain information about the vehicle type. In order to have insight 

in the SCP for BEVs and PHEVs, a vehicle type label must be attributed to each RFID.  

Labelling can be done in different ways. Here it is chosen to label the vehicle type based on a simple 

classification using charging speed and battery capacity. From the historical data, the charging speed and 

battery capacity are estimated. Based on these estimates the classification of RFIDs in either BEV of PHEV 

is determined using the methodology outlined in [5]. A simplified version of classifying EV types is shown 

in figure 3. The underlying assumption is twofold. First based on available PHEV models on the market in 

2016 it can be assumed that PHEVs have a battery capacity less than 16 kWh. Second it is assumed that the 

charging speed of PHEVs is lower than 3.8 kW. These assumptions are based on EV data3. There are PHEVs 

available that have more battery capacity than 16 kWh and a charging speed higher than 3.8 kW (e.g Audi 

Q7 E-Tron). These PHEV models where launched starting from 2016. Similarly there are BEVs that have an 

onboard charger that limits charging to 3,7 kW. By taking at least 10 sessions per RFID we are assuming that 

at least one of these charging sessions was started with a low state of charge, requiring more than 16 kWh 

capacity (given that most BEVs have battery packs of >16 kWh). These assumptions provide a fairly good 

distinction between PHEVs and BEVs given that the dataset used in this research is from the years 2015 and 

2016. 

 

Figure 3. Classification of RFIDs in BEVs and PHEVs  

based on charging speed and battery capacity 

 

 

G4 / MRA-E     EVnetNL   

EV type  Sessions Percentage  EV type  Sessions Percentage 

BEV 

PHEV 

Unknown4  

493914 

1683367 

70 

22.7% 

77.3% 

0.0% 

 BEV 

PHEV 

Unknown  

205689 

399724 

27 

34.0% 

66.0% 

0.0% 

Total 2177351 100%  Total 605440 100% 

Table 3. Characterisation of EV type based on charging speed and battery capacity. 

 

As can be seen in table 3, PHEVs contribute to the majority of charging sessions (77.3% and 66.0% for G4 / 

MRA-E and EVnetNL respectively. In the results section the difference in SCP for these two EV types will 

be looked into.  

                                                        
3 Data from: https://www.elektrischeauto.nl/overzicht/accucapaciteit/plug-in-hybride/ 
4 Some charging sessions could not be characterized due unrealistic values of negative charging speeds and 

negative battery capacity.   

https://www.elektrischeauto.nl/overzicht/accucapaciteit/plug-in-hybride/
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2.1.3 Charging sessions for different urbanity levels 

To characterise the different regions where the charging sessions took place the level of urbanity is used as 

defined by the CBS5. The CBS distinguishes five levels of urbanity with 1 for high urbanity and 5 for low 

urbanity levels. The level of urbanity is defined based on the number of addresses per square kilometre. See 

table 4. 

 

Level  5 4 3 2 1 

Description Very low 

urbanity  

Low urbanity  Medium urbanity  High urbanity  Very high 

urbanity 

Number of 

addresses per 

km2 

< 500 500 - 1000 1000 - 15000 1500 - 2500 > 2500 

Tabel 4. The level of urbanity defined by Statistics Netherlands (www.cbs.nl) 

 

Based  on this definition of the level of urbanity, the charging sessions are characterised as shown in table 5 

and 6. For each region in the datasets the percentage of charging sessions that took place in areas with certain 

level or urbanity is shown. The number of sessions per region, per level of urbanity can be computed by 

simply multiplying the total number of sessions in each dataset by the percentages shown in tables 5 and 6. 

As can be seen in these tables, the G4 / MRA-E datasets covers mainly areas with high level of urbanity 

while the majority of the sessions in the EVnetNL dataset took place in areas with medium and low levels of 

urbanity.  

 

G4 / MRA-E (Total sessions = 2177281)  

 5 4 3 2 1 Total 

Amsterdam 0.0% 0.0% 0.3% 2.5% 25.4% 28.3% 

Den Haag 0.0% 0.0% 1.4% 1.8% 9.1% 12.3% 

MRA-E 1.8% 4.2% 5.7% 11.1% 6.0% 28.7% 

MRR 0.1% 0.5% 1.5% 3.1% 1.4% 6.5% 

Rotterdam 0.1% 0.5% 1.2% 3.0% 10.3% 15.1% 

Utrecht 0.0% 0.0% 1.3% 1.4% 6.4% 9.1% 

Total 2.0% 5.1% 11.4% 22.9% 58.5% 100.0% 

Table 5. The distribution of charging sessions per region and urbanity level in the G4 / MRA-E dataset. 

 

 

 

 

 

 

                                                        
5 Definition given by the Statistics Netherlands (www.csb.nl) for the Level of urbanity.  
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EVnetNL (Total sessions = 605413)  

 5 4 3 2 1 Total 

Gelderland 2.0% 6.7% 6.2% 9.3% 3.8% 28.1% 

Noord 

Brabant 2.4% 6.1% 8.4% 11.1% 18.1% 46.0% 

Other 3.3% 3.3% 4.3% 8.7% 6.4% 25.9% 

Total 7.7% 16.1% 18.9% 29.0% 28.3% 100.0% 

Table 6. The distribution of charging sessions per region and urbanity level in the EVnetNL dataset. 

 

2.1.4 Charging sessions distribution using heatmaps 

In order to better understand the SCP it is chosen to characterize the charging behaviour of EV drivers based 

on the time at which (i) a connection starts and (ii) the connection duration. For these two dimensions the 

distributions of the charging sessions is plotted as an indication of the distributions of the charging demand. 

This is shown in figure 4. The colour in the heatmap is an indication of the distribution of the number of 

charging session with red for high and blue for low intensity.  

 

 

Figure 4. User categories based on start and duration of session 

 

What is interesting in using heatmaps as shown in figure 4, is the ability to see how the charging sessions are 

distributed. For example, three main clusters of charging sessions can be distinguished. Charging sessions of 

(i) office chargers, (ii) home chargers and (iii) a cluster that contains different user type with relatively short 

sessions through the day (labelled as visitors).  

So, in order to see how the SCP is distributed, similar heatmaps will be used in the next section. A major 

difference between the heatmap shown in figure 4 and the heatmaps that are shown in the results section is 

that on the y-axis the SCP is shown instead of connection duration. In this way one can see at each start time 

of  charging sessions what the SCP distribution is.  
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3. Results 

In this section the results of the study will be discussed based on the data and methodology description given 

in the previous section. Due to the size of the dataset (more than 2.7M transactions) and its heterogeneity we 

believe that these outcomes provide a representative view of the current EV charging behaviour and the 

possibilities for smart charging in the Netherlands.  

3.1 Clusters of charging sessions 

First, the three cluster of charging sessions (see figure 4) are defined based on the starting time of a charging 

session (horizontal axis) and the connection time (vertical axis). In figure 4 the cluster of the morning 

charging sessions can be seen. The sessions in this cluster start on average around 8:00 and have on average 

a connection duration of 8 hours. This cluster is labelled as office chargers. 

The cluster of evening sessions on the other hand contains sessions that start in the evening and remain active 

throughout the night. The most charging sessions in this cluster start around 18:00 with an average connection 

duration of 13 hours. As time progresses the connection duration of the charging sessions in the evening 

cluster decrease due to decreasing number of hours remaining till the next day. This is reflected in the 

downward slope of this cluster. This cluster is labelled as home chargers. 

The final cluster than can be seen in figure 4 is labelled as visitors. The sessions in this cluster can start at 

any moment in the day and have a relatively shorter connection duration. This cluster is more complex than 

the other two cluster since it contains sessions from different user categories with different behaviour 

characteristics.  

The identification of these two clusters makes it possible to relate the distribution of SCP as discussed in the 

next sections to the clusters shown in figure 4. 

3.2 Smart charging potential per EV type 

Figures 5 and 6 show the distribution of charging sessions for BEVs and PHEVs given the start time of a 

charging session and SCP. Figure 5 shows the results for Amsterdam in the G4 / MRA-E data while figure 6 

show the results for Gelderland in the EVnetNL dataset. In these figures it is chosen to show two dissimilar 

regions with Amsterdam as a highly urban and Gelderland as a rural area.  

From the results in figures 5 and 6 one can conclude that in most cases, the sessions with high SCP start in 

early evening and late afternoon. In general around 40% of the sessions start between 16:00 and 20:00 and 

have an SCP of 75% or higher. Sessions starting at these times are mainly sessions that take place throughout 

the night which implies that the portion of the connection time that an EV is connected but not charging is 

relatively higher. Hence the relatively high SCP. 

Second, it can be seen that in general the portion of PHEVs with an SCP higher than 75% is higher than the 

portion of BEVs in the same SCP range.  In general PHEVs have a lower battery capacity which means that 

the time to charge a BEV is in general longer. This implies that a similar charging session (e.g. a home 

charger) with a PHEV has a higher SPC since the portion of the connection time that an PHEV is not charging 

while connected to a charging point is larger.  

Third, comparing the distribution of the SCP between the BEVs and PHEVs it can be seen that the distribution 

of SCP for PHEVs is more concentrated around a starting time from 16:00 to 20:00. For BEVs however the 

distribution is less concentrated around specific connection times. As we see  in figure 5, in Amsterdam, the 

number of charging sessions with a SCP higher than 75% is 5% lower for BEVs compared with PHEVs.  

Fourth, for Gelderland (figure 6) the distribution of SCP for PHEVs shows a similar pattern as in Amsterdam 

(figure 5) while the distribution of SCP for BEVs the very different. In this distribution three different regions 

of concentration can be observed. In addition to the peak between 16:00 and 20:00, there is a peak in the 

morning with high SCP and a concentration of sessions with SCP around 25% throughout the day. This 

means that for Gelderland, the morning sessions have high SCP in addition to the evening sessions. These 

insight can be used as input for defining optimal smart charging strategies. For example, the application of 

smart charging for the morning sessions might focus on solar charging while smart charging for the evening 

sessions might be focused on utilizing wind energy.  
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From the results shown in figures 5 and 6 one can conclude that charging sessions with high SCP are sessions 

that starting between 16:00 - 20:00.  In addition,  these sessions account for more than 40% of the  total 

number of sessions, so the impact of applying SC to these sessions  would be relatively high.  

 

 
Figure 5.  The distribution of the SCP for BEVs and PHEVs in Amsterdam in the G4 / MRA-E dataset. 

 

 
Figure 6.The distribution of the SCP for BEVs and PHEVs in Gelderland in the EVnetNL dataset. 

 

3.3 Smart charging potential per geographical location characteristics 

The SCP per geographical location characteristic is analysed using the level of urbanity as defined by CBS. 

The distribution of SCP for the lowest and highest levels of urbanity is shown in figure 7 for the G4 / MRA-

E dataset and in figure 8 for the EVnetNL dataset.  

 

In figures 7 and 8 the same general pattern is observed with the majority of charging sessions starting between 

16:00 and 20:00 having an SCP of 75% and higher.  Furthermore, we can  observe in  both figures  that as 

the level of urbanity decreases the distribution of SCP becomes less concentrated around these specific 

connection times. Due to the definition of level of urbanity based on the number of addresses per square 

kilometre, it is expected that regions with high levels of urbanity have more residential addresses than regions 
with low levels of urbanity. This implies that in regions of high urbanity EVs will be charging at home. And 
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as can be seen in figure 4 these sessions take place in the evening and hence the higher SCP for evening 

sessions. Regions with lower levels of urbanity are expected to have less residential addresses. This implies 

that part of the charging sessions in these regions will occur during the day and will have a lower SCP than 

the home charging sessions since the average connection duration of charging session through the day is 

generally lower (see figure 4). The lower connection duration leads in this case to lower SCP as can be seen 

in figures 7 and 8. 

 

From figures 7 and 8 it can be concluded that as the level of urbanity decreases, the distribution of the 

charging sessions moves from a concentrated distribution of sessions starting between 16:00 and 20:00 to a 

distribution with sessions throughout the day with lower SCP.  

 

 
Figure 7. The distribution of the SCP for the  highest and lowest levels of urbanity in the G4 / MRA-E dataset. 

 

 
Figure 8. The distribution of the SCP for the  highest and lowest levels of urbanity in the EVnetNL dataset.  
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4. Conclusions and recommendations 

In this study we proposed a methodology to assess the SCP of EVs based on charging sessions at public 

charging points in the Netherlands. The dataset consists of two major datasets: G4 / MRA-E with charging 

sessions mainly from urban areas and EVnetNL with charging sessions from  nationwide network of charging 

points.  

First, the distribution of charging sessions is studied by using heatmaps based on start time and connection 

duration of sessions. Using these heatmaps (figure 4) three main clusters are identified which are labelled as 

home chargers, office chargers and visitors. This categorisation of charging sessions allows us to relate the 

distribution of SCP to specific clusters.  

Second, the SCP is quantified using similar heatmaps. The distribution of the SCP for different EV types at 

different regions is compared. As can be seen in figures 5 and 6 about 40% of the sessions start between 

16:00 - 20:00 and have an SCP of 75% and higher. Comparing a highly urban area (Amsterdam) with a rural 

area (Gelderland) shows that in addition to the high SCP for home chargers, the office chargers in Gelderland 

have a high SCP too.  

In addition to comparing SCP for different EV types, the SCP is compared for different urbanity levels (figure 

7 and 8). As the level or urbanity increases, the distribution of the SCP becomes less concentrated around 

16:00 - 20:00. This can be explained due to the fact that regions of high levels of urbanity have more 

residential areas with more home chargers that mainly charge in the evening (figure 4).  

Policy makers and market parties (i.e. charge point operators and e-mobility service providers) should assess 

the possibilities for implementing smart charging services in order to make EVs more beneficial for users. 

This study proves that there is sufficient potential for e.g. postponing charging sessions without creating any 

practical obstacles for EV users.  

The methodology used in this study might help to pinpoint the smart charging potential which in turn will 

help policy makers to apply smart charging strategies at the appropriate moment with the appropriate 

objective. For example, the comparison between Amsterdam and Gelderland shows that Gelderland has the 

potential to utilize solar power for office chargers and that both Amsterdam and Gelderland can utilize wind 

power for home chargers.  

One should be aware that developments regarding EV characteristics (battery capacity, charging speed etc) 

are relevant indicators when it comes to SCP. Also, adoption of EVs by wider group of EV users will have 

implications on smart charging possibilities of EVs. For example, the annual commute distance of average 

car users is less than the commute distance of the current EV owners. Furthermore, this analysis is done on 

aggregated level, more research is needed to validate these outcomes at individual level.    
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