

Anticipating extreme showers in urban areas - dealing with uncertainties

ECCA, Hamburg 2013

18 March 2013

Jeroen Kluck,

- professor Urban Water at Amsterdam University of Applied Sciences

Message

Try to accept them and just do the right thing.

Because solution is logical

- Make more space for water
- Improve urban area
- Together with other stakeholders

Increase in flooding

- Increase of impervious areas
- Climate change
- Optimized sewer systems
- Urban areas pram-friendly.

Research

Uncertainties

Physical

- Rainfall
- Modeling
- Real situation / DTM

Political/organisational

- What is acceptable?
- How to implement?

Extreme events in The Netherlands

- 100 years at De Bilt (Dutch meteo-station)
 - not enough for T=100?
 - Not representative?

Extreme events in The Netherlands

- 100 years at De Bilt
 - not enough for T=100?
 - Not representative?
- Almost 1000 years combining ground stations
 - Correlated? And then?
- 11 years of radar 370 times > 40 mm.
 - Correlated!
 - Peaks to low!

Extreme events in The Netherlands

- 100 years at De Bilt
- Almost 1000 years combining ground stations
- 11 years of radar 370 times > 40 mm.
 - Correlated! But then what??
 - Peaks to low!
- Climate change
 - + 10-27% for daily rainfall in 2050
 - + Each ΔT +14%?
 - Length data range for extremes?

Rainfall

40 – 70 mm in 1 hour!

Extreme regenval (D = 1h)

Onzekerheden en klimaatverandering

Modeling

The models are getting better! SOBEK 1D/2D, InfoWorks 1D/2D, 3Di

However

- No validation
- Still some major problems
 - Contribution of unpaved?
 - Water on streets or in sewer

Modeling of surface flow Start simple! Even if not always correct!

DTM

Excellent 1*1 of 0,5*0,5

- But walls? Culverts? Tunnels
- Gardens
- Developments/changes

Legislation

Unclear in The Netherlands

- Up to T=2 in sewer
- More extreme: unclear
 - In general safety in streets
 - Up to what level
- Efficient discharge of surplus water

What to do?

Spot on horizon is clear!

- More space for water
 - Street kerbs / street profile

What to do?

Spot on horizon is clear!

- More space for water
 - Street kerbs / street profile
 - Dedicated depression (parks, squares)

What to do?

Spot on horizon is clear!

- More space for water
 - Street kerbs / street profile
 - Dedicated depression (parks, squares)
- Prevent flow towards vulnerable areas

4 steps to overcome uncertainties

4 steps

- 1) Evaluate really extreme event (60 mm in 1 short time)
- 2) Assess vulnerable locations
 - → To be solved/accepted
- 3) Investigate solutions (if costly/critical maybe extra research)
 - Mainly on surface
 - Retain water, divert it to surface water, local depressions
- 4) Choose actions
 - Direct
 - Future fitting in other opportunities
 - Change vision on urban space

4 steps / uncertainties

Rainfall Model

- 1) Evaluate really extreme event (60 mm in 1 short time)
- 2) Assess vulnerable locations
 - → To be solved/accepted
- 3) Investigate solutions (if costly/critical maybe extra research)
 - Mainly on surface
 - Retain water, divert it to surface water, local depressions
- 4) Choose actions
 - Direct
 - Future fitting in other opportunities
 - Change vision on urban space

DTM

Legislation

Implementation

- Sewer/water manager + other stakeholders
- Communication

→ Flood maps / workshops touch table

- Create awareness of their role for water
- Show advantages
 - Reduces risk of flooding
 - Improves living area
 - Space for green & water →
 - Heat stress
 - Restore original water cycle
 - Biodiversity

Urban flood maps

- Local situation
- Occurred floods
- Flood evaluation
 - DEM LiDAR: 1 point/m²
 - Type of surface: houses, roads & water
 - Extreme storm: e.g. 60 mm (T=100 + climate change)
 - 20 mm in sewer (not simulated)
 - 40 mm on surface
 - Sewer system

Workshop

Discuss situation at extreme event

Find some solutions

Create awareness

Stakeholders

- Water,
- Green,
- Road,
- Mobility,
- Urban design,
- Project management

Evaluation

Appears to work

- uncertainties are no obstacle

Results in

- more awareness for space for water
- collaboration
- more resilient urban areas in the future

Questions?

- Jeroen.kluck@tauw.nl / j.kluck@hva.nl
- Annelies Straatman
- Eric van Dijk