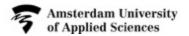


ZEEBURG P+R

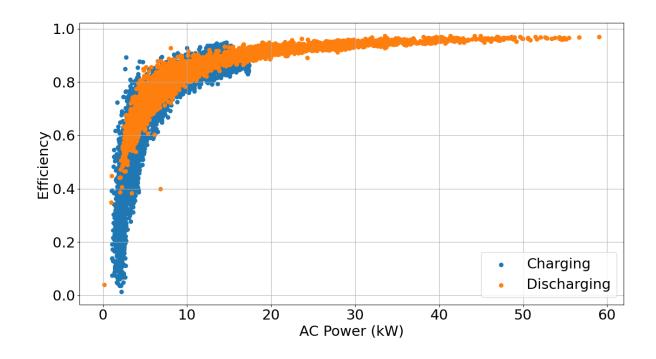
CREATING TOMORROW

WHATS GOING ON?

P+R system with 8 charge points

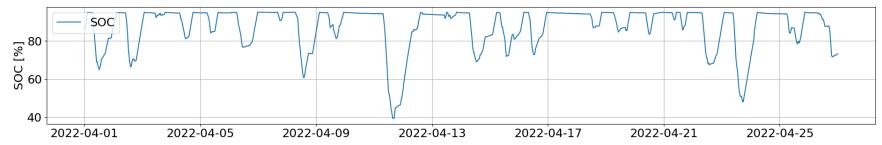

Limited capacity grid connection $(3 \times 80 \text{ A})$

On-site battery to support charging (240 kW, 336 kWh)

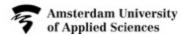

Short term solution to electricity network capacity issues

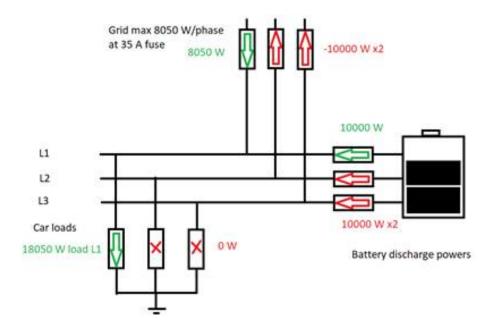
Destination charging stations & charging points Battery system 240 kW 336 kWh 2 27 3 240 kW 336 kWh 336 kWh 336 kWh 337 340 kW

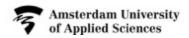
INVERTER EFFICIENCY



High conversion losses from AC to DC and vice-versa

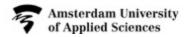

BESS USAGE



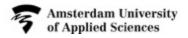

BESS is oversized or underutilised for current operation

GRID FEEDBACK

BESS continued feeding power back to the grid when phases were unbalanced



	Initial operation (June & July)	After feedback protection update (October & November)
Minimum inverter efficiency	4 %	5 %
System round trip efficiency	71 %	57 %
Battery idle	50 %	69 %



RECOMENDATIONS

- Program a battery charge/discharge deadband of 10 kW
- ► Increase the programmed grid connection to 3 × 35 A (24.2 kW)

	Initial operation (June & July)	After feedback protection update (October & November)	After BESS control updates (January & February)
Minimum inverter efficiency	4 %	5 %	76 %
System round trip efficiency	71 %	57 %	68 %
Battery idle	50 %	69 %	89 %

OPTIMISATION PROBLEM

- Minimise annual system cost
- ► Function included BESS sizing, grid connection, loss of revenue from undelivered load
- Considered future proof load profile of 7 MWh, compared to currently observed 5 MWh
- Used a Genetic Algorithm, repeatedly using the same load profile

OPTIMISATION RESULTS

	Zeeburg P+R	Optimal sizing
Grid connection capacity	3×25 A	3×80 A
Battery energy storage capacity	336 kWh	69 kWh
Battery power capacity	240 kW	45 kW
Annualised cost	€9518 / year	€7101 / year
Loss of potential load	452 kWh	81 kWh

TAKEAWAYS

- The inverter must be adequately sized
- ▶ The BESS must be able to operate on all 3 phases individually
- BESS must be able to deliver power back to the grid

- ▶ BESS requires improved control depending on the intended function
 - ▶ Peak shaving?
 - Grid ancilliary services?
 - Energy arbitrage?
 - Smart charging?
- ▶ Is there a possibility of a solar roof installation? Would that be cheaper?