

Tackling Urban Heat Vulnerabilities through Co-creation:

Combining meteorological, social, and environmental indicators to identify and prioritize project locations for mitigating heat stress in urban areas

Symposium - Hitte in de Stad: Hete Hangijzers 27 June 2023

Stephanie Erwin – Amsterdam University of Applied Science (AUAS) Sába Schramkó – Amsterdam University of Applied Science (AUAS)

Cool Towns - AUAS research team (2021-2023)

Stephanie Erwin, MLA Senior Researcher Climate Resilient Cities

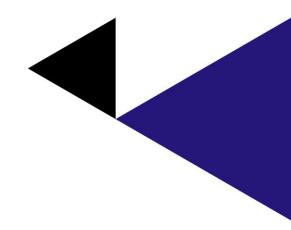
Climate resilience Landscape Architecture Urban planning & design GIS

Sába Schramkó, MSc Researcher Climate Resilient Cities

Climate resilience Architecture Urban design Gideon Spanjar, PhD Senior Project Leader Climate Resilient Cities

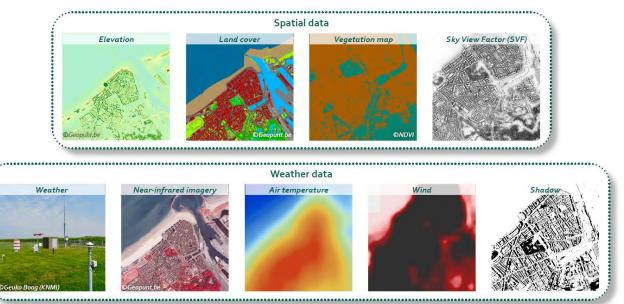
Climate resilience Landscape architecture Neuro-architecture Dante Föllmi, MSc Junior Researcher Climate Resilient Cities

Climate resilience Land & water management GIS


Climate resilience Engineering Hydrology

2 Tackling Urban Heat Vulnerabilities through Co-creation

Why do we need to identify and prioritize heat stress mitigation projects?


- Increasing heat stress risks with detrimental effects to the liveability of public spaces
- No clear spatial overview of where action is needed
- Heat stress impairs vital urban functions, poses risks
 to citizens' health
- Cities becoming densely populated = pressure on attractive cool public places

Conventional methods

Meteorological, remote sensing and modelling techniques to identify potential areas vulnerable to heat stress

(Urban Heat Atlas. Spanjar et al., 2023)

Conventional methods

Exclusively relying on thermal comfort models fails to consider important socio-environmental dynamics and vulnerabilities

Conventional methods do not go far enough

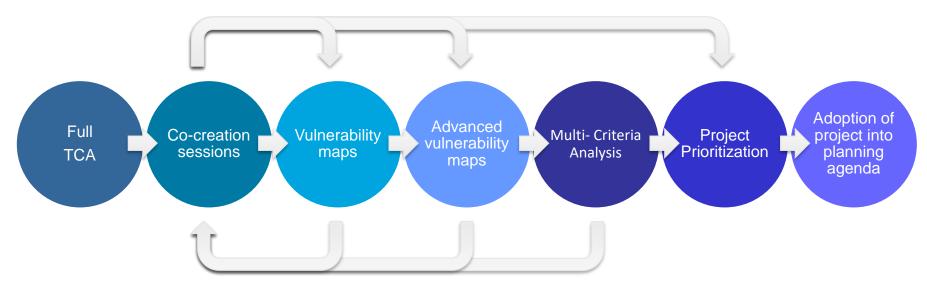
(Urban Heat Atlas. Spanjar et al., 2023) Creating Tomorrow

Where do we focus?

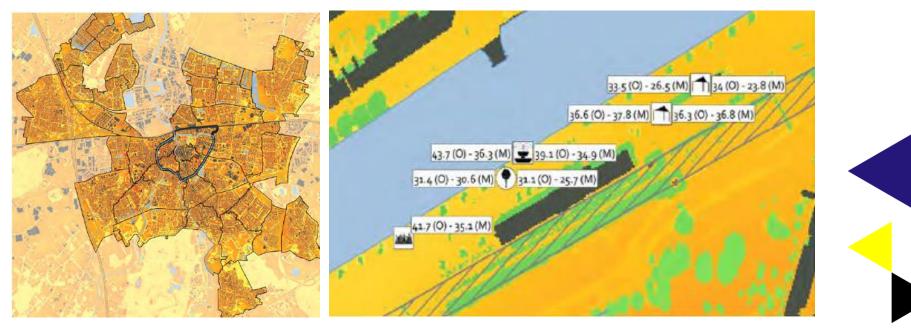
- Prioritization proves difficult without a comprehensive overview.
- Where do we focus? It looks hot everywhere.

(Urban Heat Atlas. Spanjar et al., 2023) Creating Tomorrow

Methodology: context identifying & prioritizing projects

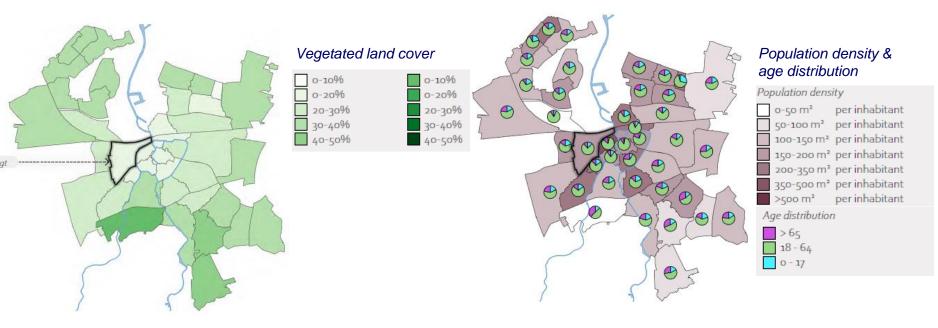

- Was developed partially within the Interreg 2 Seas region CoolTowns Project 2019-2023
- Was further developed at the request of the Municipality of Breda in the Netherlands

Gemeente Breda

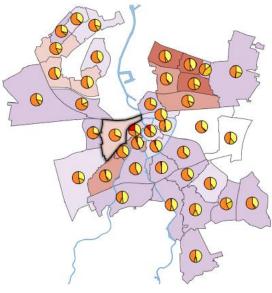


Methodology: overview identifying & prioritizing projects

1. Full thermal comfort assessment (TCA)



2. Co-creation sessions with municipal stakeholders



3. Inventory and analysis: neighborhood vulnerability

3. Inventory and analysis: neighborhood vulnerability

Socioeconomic status (SES) & heat stress levels (PET)

Socioeconomic status


Extremely below city average
 Strongly below city average
 Moderately below city average
 Slightly below city average
 Slightly above city average
 Moderately above city average
 Strongly above city average

Heat stress levels

46-51Extreme Heat Stress (LV2)41-46Extreme Heat Stress (LV1)35-41Strong Heat Stress

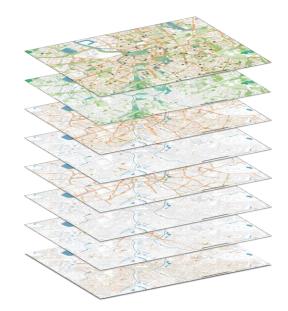
29-35 Moderate Heat Stress

23-29 Slight Heat Stress

Cool outdoor ground level area per inhabitant

0-10 M²	[PET < 35 ° C] / inhabitant
10-20 M²	[PET < 35 ° C] / inhabitant
20-30 m²	[PET < 35 ° C] / inhabitant
30-40 m²	[PET < 35 ° C] / inhabitant
40-50 m²	[PET < 35 ° C] / inhabitant
50-75 m²	[PET < 35 ° C] / inhabitant
50-75 111-	[FET < 35 C]/innabitant
75-100 m²	[PET < 35 ° C] / inhabitant
75-100 m²	
75-100 m² 100-125 m²	[PET < 35 ° C] / inhabitant
75-100 m² 100-125 m² 125-150 m²	[PET < 35 ° C] / inhabitant [PET < 35 ° C] / inhabitant

4. Co-creation sessions with municipal stakeholders


12 Tackling Urban Heat Vulnerabilities through Co-creation

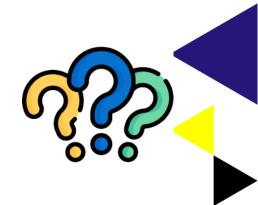
5. Synthesis: Advanced vulnerability map

Where do people experience heat stress? Where do people experience coolness?

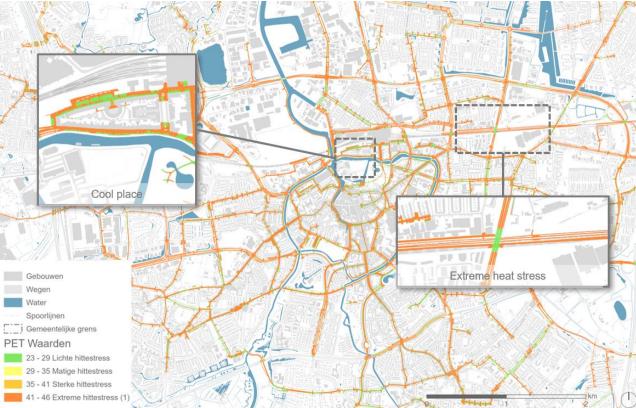
5. Synthesis: Advanced vulnerability map

Layers to overlay on top of PET model:

Vulnerable locations such as:


- Public transportation stops,
- Playgrounds,
- Childcare,
- Healthcare related facilities,
- and educational facilities, etc.
- Future and/or planned developments such as:
- Street improvements
- Infill and retrofitting neighborhoods
- and commercial and housing, etc.

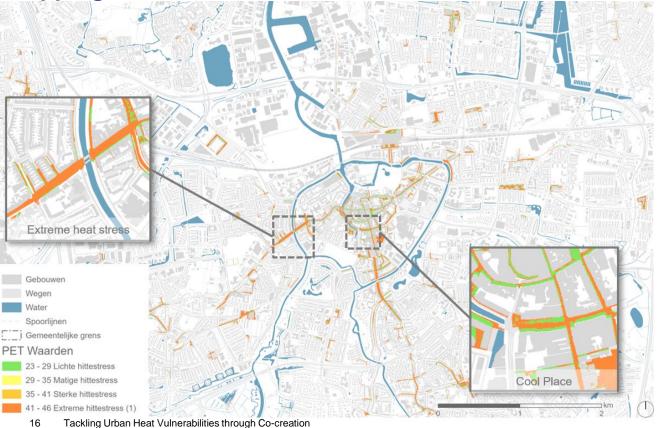
Mobility network such as:


- Primary and secondary slow traffic routes
- Public transportation routes
- Bike share locations, etc.

Locations to "stay" such as:

- Squares,
- Shopping streets,
- Parks and recreational areas.

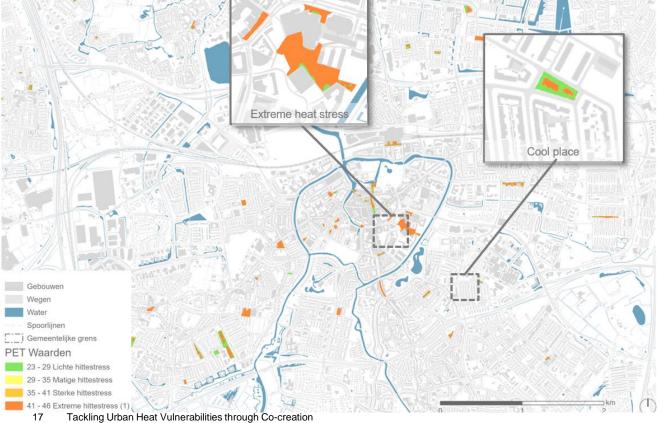
Slow traffic routes & intersections


Amsterdam University of Applied Sciences

- Strava
- Input from stakeholders
- Local GIS data
- Traffic counts
- Expert analysis digitized

Creating Tomorrow

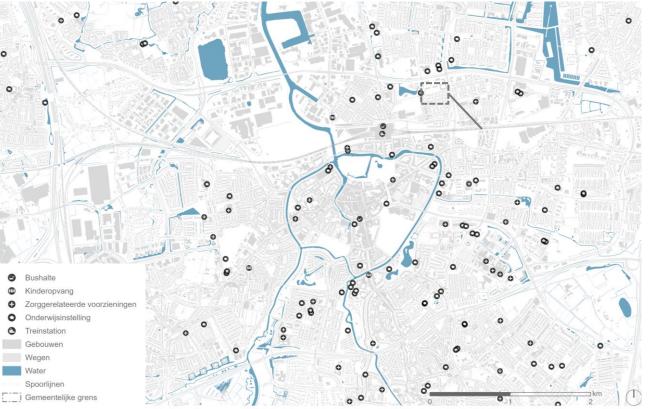
Shopping streets


Amsterdam University of Applied Sciences

- Open Street Maps
- Input from stakeholders
- Local GIS data
- Expert analysis digitized

Creating Tomorrow

Squares, school yards & playgrounds

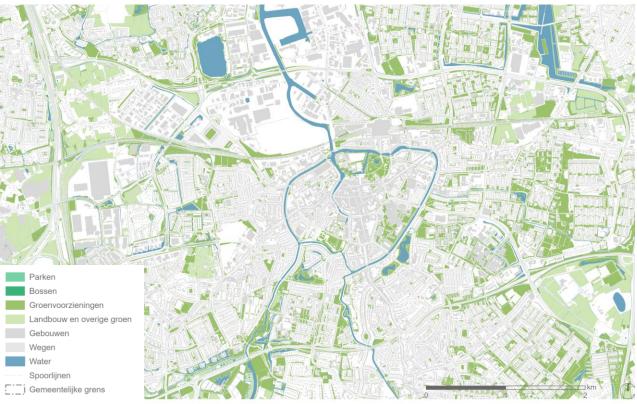

Amsterdam University of Applied Sciences

- Open Street Maps
 - Input from stakeholders
- Local GIS data
- Expert analysis digitized

Creating Tomorrow

Vulnerable locations

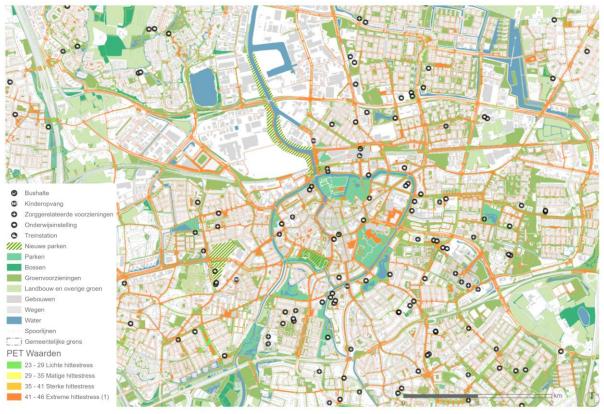
Amsterdam University of Applied Sciences


- Open Street Maps
- Input from stakeholders
- Local GIS data
- Expert analysis digitized

18 Tackling Urban Heat Vulnerabilities through Co-creation

Creating Tomorrow

Green spaces



Amsterdam University of Applied Sciences

- Open Street Maps
- Input from stakeholders
- Local GIS data
- Expert analysis digitized

Combine all the layers together

Amsterdam University of Applied Sciences

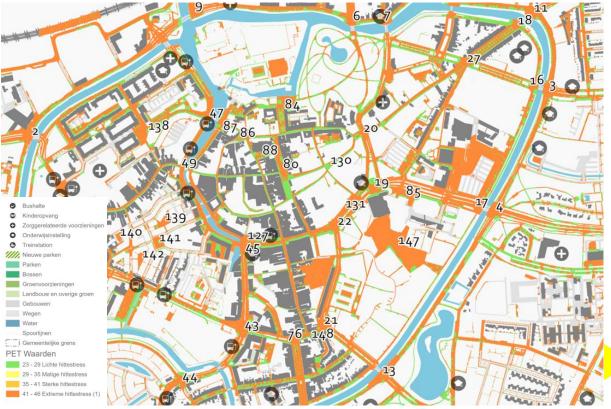
- Gives an overview of where heat stress occurs linked to use
- Next step prioritization

20 Tackling Urban Heat Vulnerabilities through Co-creation

6. Multi-Criteria Analysis (MCA) for project prioritization

Squares, playgrounds and slow traffic intersections:

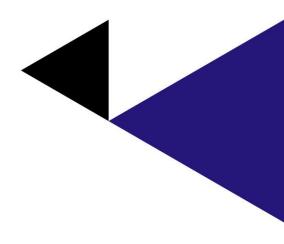
- Percentage surface area with extreme heat stress (PET > 35 $^{\circ}$ C)
- Primary function (shopping centre, school, care facility, etc.)
- Type of slow traffic route
- Primary and secondary slow traffic intersections
- Amount of benches present



72 squares and playgrounds

83 slow traffic intersections

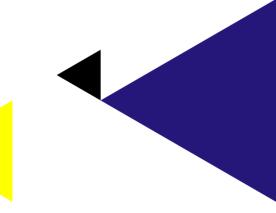
1	Location	Function	Seats	Route	% above 35	1	Location	% above 35
2	33 Speeltuin Donkslagen	Speeltuin		2 Tertiair	100%	2	61 CornelisJoosstraat-LangeWeide-Kapittelweg-Maasdijk	99,22%
3	35 Speeltuin Heksenwiellaan	Speeltuin		3 Tertiair	100%	3	55 Stationslaan-Belcrumweg	99,04%
4	49 Speeltuin Heiveld	Speeltuin		2 Tertiair	100%	4	74 Ettensebaan-Heilaarstraat-labc	98,72%
5	57 Speeltuin Bramentuin	Speeltuin		0 Tertiair	100%	5	26 NieuweKadijk-Kapittelweg	98,62%
6	66 Speeltuin Don Boscoplein	Speeltuin		2 Tertiair	100%	6	34 ClaudiusPrinsenlaan-Heerbaan-VerlengdePoolseweg	98,47%
7	50 Speeltuin Zonnedauw	Speeltuin		1 Tertiair	100%	_	73 Ettensebaan-Tuinzigtlaan	98,08%
8	29 Speeltuin Juliana de Lannoystraat	Speeltuin		4 Tertiair	100%	8	57 Crogtdijk-Konijnenberg-BackerEnRuebweg	98,01%
9	46 Speeltuin Nieuwe Daalakker	Speeltuin		2 Tertiair	100%	9	54 Trekpot-NieweKadijk-Teteringseweg	97,03%
10	52 Oude Vest	Horeca		3 Primair	99%	10	52 Terheijdenstraat-Terheijdenseweg-Stationslaag	96,90%
11	36 Speeltuin Priemkruid	Speeltuin		5 Tertiair	98%	11	5 Julianalaan-Irenestraat	96,76%
12	53 Winkelstraat Wilhelminastraat	Winkelstraat		0 Primair	97%	12	33 Tilburgseweg-NieuweKadijk	96,73%
13	38	Speeltuin		0 Tertiair	97%	13	69 Haagweg-Ettensebaan-VincentVanGoghstraat	95,63%
14	10 Graaf Hendrik III Plein	Winkelgebied/Parkerer	n	6 Primair	97%	14	56 Moerlaken-Konijnenberg	95,10%
15	60 Plein van Gastelveld	Speeltuin		0 Tertiair	95%	15	23 Teteringsedijk-Beverweg-Kapittelweg	94,56%
16	65 Verbeetenstraat	Winkelgebied		0 Tertiair	95%	16	79 NieuweKadijk-Doornboslaan	94,22%
17	17 Speeltuin Talmastraat Breda	Speeltuin		0 Secundair	94%	17	83 Spoorstraat-Moskesweg	92,41%
18	68 Chassé Promenade	evenemententerrein		4 Primair	94%	18	66 Lunetstraat-Meidoornstraat-Ravelijnstraat	91,25%
19	2 winkelcentrum heksenwiel	Winkelcentrum		12 Primair	94%	19	39 FranklinRooseveltlaan-Ginnekenweg-PrinsHendrikstraat	90,62%
20	39 Speeltuin Rijtsweg	Overig		4 Tertiair	94%	20	25 ClaudiusPrinsenlaan-Beverweg-deLaReijweg	90,50%
21	61 Pelmolenshof	Speeltuin/parkeren		0 Tertiair	94%	21	67 ZoeteInval-Lunetstraat-RatVerleghstraat	89,94%
22	43 Haagsemarkt	Winkelstraat		12 Secundair	93%	22	75 Leursebaan-labc	88,72%
23	47 Speeltuin Hoge Daalakker	Speeltuin		2 Tertiair	93%	23	72 NieuweHeilaarstraat-Heilaarstraat	88,61%
24	67 Dr. Struyckenplein	Winkelgebied		0 Primair	92%	24	82 Valkeniersplein-Allerheiligenweg-Valkenierslaan-Overakkerstra	88,35%
25	6 Kloosterplein	Culturele		11 Primair	91%	25	35 JohanWillendFrisolaan-Baronielaan	86,94%
26	26 Speeltuin Midenerf	Speeltuin		4 Tertiair	90%	26	64 Doornboslaan-Teteringsedijk-Teteringsestraat-Ceresstraat	86,64%


Combine the advanced vulnerability and MCA

Amsterdam University of Applied Sciences

- Gives an overview of where heat stress occurs linked to use
- Next step prioritization

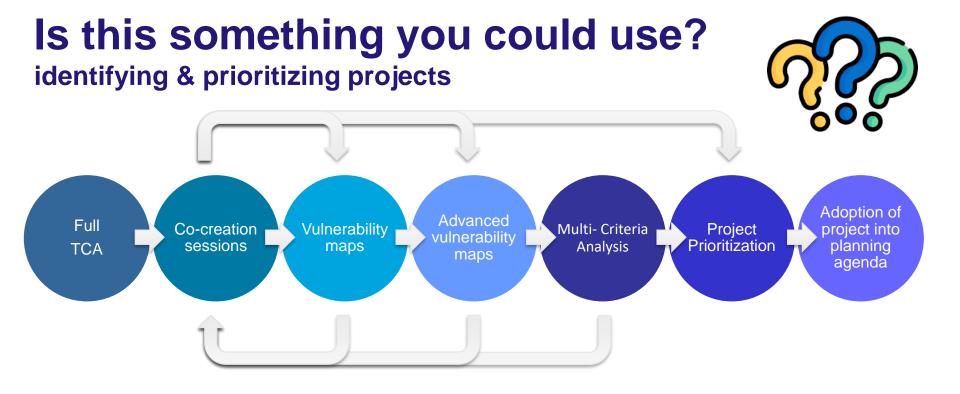
23 Tackling Urban Heat Vulnerabilities through Co-creation


Co-creation session questions?

24 Tackling Urban Heat Vulnerabilities through Co-creation

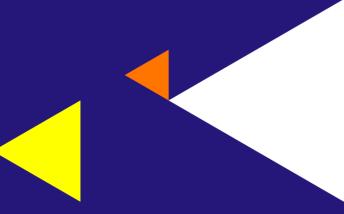
- Given your expertise, which areas experience heat stress?
- Which are locations that require the most attention? ٠
- Within your expertise what are important criteria for prioritizing a project?
 - PET % •
 - Function ٠
 - User intensity ٠
 - feasibility ٠
 - Link opportunities with existing projects ٠
 - Co-benefits (higher biodiversity, water ٠ management, etc.)

of Applied Sciences



7. Co-creation sessions with municipal stakeholders

- Participants were divided into two groups and tasked with determining priority project locations
- They filtered out locations that had recently been redeveloped or were planned for redevelopment soon
- Consensus among participants that playgrounds experiencing significant heat stress should be prioritized
- Created a top 10 list of locations that could be made more heat-resistant in the upcoming years


Thank you! Questions or comments?

Please be in contact if you have any more questions or would like to connect!

Stephanie Erwin - <u>s.m.erwin@hva.nl</u> Sába Schramkó - <u>s.k.schramko@hva.nl</u>

Böcker, L. and Thorsson, S. (2014). Integrated Weather Effects on Cycling Shares, Frequencies, and Durations in Rotterdam, The Netherlands. 6, (4), 468-481. doi: 10.1175/WCAS-D-13-00066.1
Ebi, K.L. et al. (2021). Hot Weather and Heat Extremes: Health risks. The Lancet, 398, (10301), 698-708. doi: 10.1016/S0140-6736(21)-1208-3
Elnabawi, M. H., & Hamza, N. (2020). Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere, 11(1), 51. doi: 10.3390/atmos11010051
Spanjar, G., Bartlett, D., Schramkó, S., & Kluck, J. (2022). The Urban Heat Atlas: A standardised assessment for mapping heat vulnerabilities in Europe. Amsterdam: Amsterdam University of Applied Sciences.

