

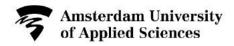
Data mining for aircraft maintenance repair and overhaul (MRO)

Maurice Pelt

Aviation Academy, Faculty of Technology Amsterdam University of Applied Science

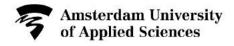
17 April 2019

CREATING TOMORROW



Contents

- RAAK project Data Mining in MRO
- Methodology
- Data sources and preparation
- Modelling
- Concluding remarks



Aircraft Maintenance and Unpredictability

MRO benchmarks: TAT, reliability, cost Challenges:

- Large variation in maintenance duration (and TAT)
- Uncertainty in inspection findings / spare parts needed
- Components replaced (long) before end of life

Opportunity:

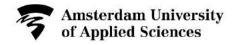
• Data growth and powerful algorithms

TAT: Short and reliable MRO lead times

<u>Costs</u>: Reduction of MRO idle time and overprocessing

<u>Costs</u>: Optimal use of components remaining life

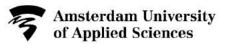
Source: blog.klm.com



Research project Data Mining in MRO

HvA initiated applied research project, 2016 - 2018 28 case studies at 10+ companies RAAK MKB program funded by SIA, Ministry of Economic Affairs

Research objective: How can SME MRO's use fragmented historical maintenance data to decrease maintenance costs and aircraft downtime?



2013 Research Ultrasonic Verification of Composites Timeline 2014 RAAK project: Maintain your competitive edge (Lean) of project: 2015 July: First ideas about a Data Mining project Writing of proposal, workshops with industry partners **Data Mining** Consortium NAG, Nedaero and JetSupport; Partner Exsyn, Novulo, JetNetherlands, KVE, Flying in MRO Service, Tec4Jets (TUI) ABS Jets, CHC Helicopters; Others: Royal Netherlands Air Force, TU Delft October: Proposal submission to SIA March: proposal v2; approved in July 2016 1st wave of case studies; workshops, round table More companies: Nayak, Lufthansa, KLM, Transavia, NS, Fokker, NLR Some initial partners left the project 2nd wave of case studies, expansion to machine learning; workshops 2017 Conferences 2017-18: RAeS UK IET UK, AEGATS FR, SLF NL, ISATECH TR 2018 3rd wave of case studies, deployment; workshops Integration of project results 2019 March: Project closing; final report Conferences: maintenance research day NL, EASN GR, RAMS USA and others 2020 and New RAAK project Aviation knowledge hub MRO bevond

The final report

Understanding data

-	Vendor Part number Serial number Greer Chy Sis tiatus Remeval reason Engiptration Safety Stock fol Date stamps Location (or + off air)	PI 45 Release TAA, TSO Part number Secial number Release
Task Still http:// Zone Softrenoel Effectivity	Jobcards	Registration ATA (aircraft system) Obscreption Corrective Action Manhours Charged perty ALIM, IPC reference Date

Understanding data

Pipare 3. Three Costers of data you on maintenance data. Night data and notional data (WAS2810)

28

4.1 Common data sources in aviation	3. External data
The data understanding phase starts with initial data collection and proceeds with data familiar pation.	 Benchmarking data-gathered from a large group of similar alreadt, components or processes and often property of CEMs, arrines or WROs
Three main categories of data sources	
This study used three main categories of data sources:	 Weather data
1. Maintonance data (explained below)	- Aircraft.position data (such as ADS-8)
2. rlight recorder data	The data sets selected in each case depend on the initially-defined data mining goals. There must be
 Operational data from the Flight Data 	a plausible connection between the data sets and
Recorder (PDR) and Quick Access Recorder (QAR)	the data mining case. In addition, some criseria often arise from practical considerations, such as data accessibility and ownership.
 Sensor data from the Aircraft Health 	
Management (AHM) system	We have adjusted and complemented the informa- tion presented in the book by Sahay (Sahay, 2012) for
 Maintenance messages from the AHM system 	the MRD industry through the visualisation made by the AUAS. This gives an overview of the types of data and sources that are mostly found at MHD companies in our shafe.

Table 2 highlights the fact that there are many data sources, which can make it challenging to access and link them. In 2: An own view of plata sporter, and types in eviation by Saltan (2012).

Source	Data
CEM	MSI and maintenance task with intensi, Maintenance Panning Document, Illustrated Part Catalogue, Aircraft Maintenance Manual, Iogine Manual, Component Mantenance Manual, Tools and Equipment Manual, Fault Inclation Manual, Master Maintenan Equipment: List, Airtnes and Engine Senail Numberi, Line Numbor, Dimonsons, and Service Builtena.
Operator	Maintenance Programmo, Reliability Programme and Work Packages, Routing Information, and a Minimum Equipment List.
CAA	Aircraft Registration (Type Certification Data Sheet (TCDS)), Tail Number, Airworthness Certificate, and Airworthness Directives.
MRO	Engine Test Results and Work Packages.
Task çarda	Maintenance Tasks, Materials and Tools, Task Start and End Time, Engineer Details, Estimated Time for Task, and Task Number.
Aircraft	Aircraft Supply Deferred Defects, Electronic Log Books (pilot, cabin, defect and Technical) and Faults & Conditions.
Unknown	Time Limits Manual, FRM, Customer Number, Block Number, Handling Information, Hazard & Rick Assessment Information, Safety Shoets, and Report to Regulator.

4 UNDERSTANDING THE DATA

A sensing of data assured the MBC industry constantioned by a works of data sources, from individual data monotest during a Flagt source, an entities of sources (a, eff. Sec. 40, 10 shops and individual sources) and an entities of the sources of the sources of the sources and the data of the source of the source of the sources and an on-torional obstacles (an assess these sources). These establishes can be source individual and an on-torional obstacles (an assess these sources) and sources the source of the source of the source of the sources of the source of the source of the source of the data of the source of the source of the source of the data of the source of the source of the source of the data of the source of the source of the source of the data of the source of the data of the source of the data of the source of the source of the source of the source of the data of the source of the data of the source of the source of the source of the source of the data of the source of the data of the source of the data of the source of t

Any langing The data under the program of the sector of the initial data. The data under the program of the sector at the halo escarable because annular with the data. dentify data, and after trainwing under the data. dentify data, and after trainwing under the form types these for hidden information. This task a performed is principal for exact front in data does not intro, the principal for exact front to data does not intro, the next the ax well as a principal for attack.

Connecting abta to the Businesi case Once researchers have gained an understanding of the case, they then take a closer took into the stara available for instar mining. This is important because to connects the data to the business case to help retrieve the relevant parameters. This in turn requires an un-derstanding of the business and the physical proper-ties related to maintenance.

The data could prove they existing purchased and addition data - a variety of source, is other acute where the source and the source data and the source reverse themesenses and interfer variables. Then, they show any source reserve that source reverse themesenses and interfer variables. The means of data, the suite reverse and the costing the resource data costs of the source reverse the resource data costs of the source reverse themesenses and the source reverse r mismatch.

Initiators / researchers / authors of Data Mining in MRO

Timeline

Robert Jan de Boer

Maurice Pelt

Jonno Broodbakker

Maaik Borst

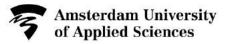
Ruud Jansen

Konstantinos Stamoulis

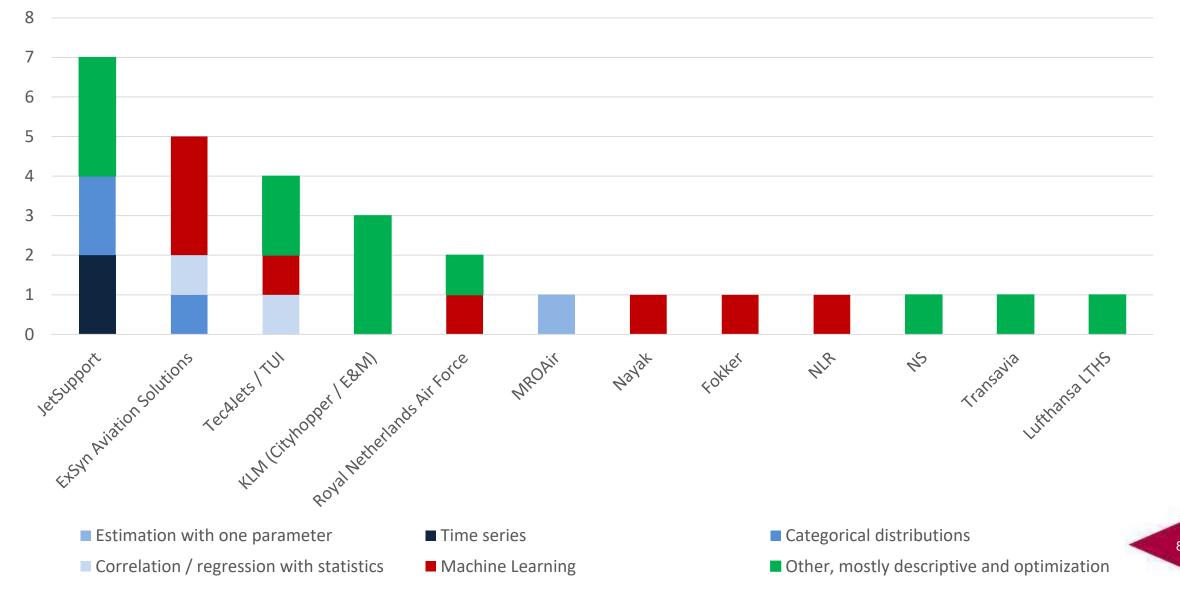
Asteris Apostolides

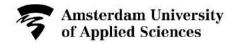
Roberto Felix Patron

Lorance Helwani



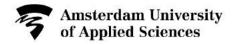
Case studies per company and method; 28 in total





Case studies and student-researchers (1)

Group 1: Estimation	with one parameter
Raymond Molleman	Predicting findings on aviation maintenance task cards (MROAir, 2017).
Group 2: Time series	5
Michael Killaars	Predictive maintenance in MRO with datamining techniques (JetSupport, 2017).
Rik Graas	Predicting maintenance durations using time series forecasting techniques (JetSupport, 2018).
Group 3: Categorical	l distributions
Jerry Knuyt	Aircraft maintenance duration prediction using the most appropriate statistical distribution model (JetSupport, 2018).
André Koopman	Application of established reliability-based methods for predictive maintenance in a small to medium third-party maintenance organization (JetSupport, 2017).
Cheryl Zandvliet	Data mining in aviation: predictive component reliability (ExSyn Aviation Solutions, 2016).
Group 4: Correlation	n / regression with statistics
Gerben de Jager	Potentie van datamining bij Tec4Jets (Tec4jets, 2018).
Bashir Amer	Engine Health Monitoring: Monitoring the heart of the aircraft (ExSyn Aviation Solutions, 2017).
Group 5: Machine Le	earning
Jonno Broodbakker	Data mining applied to operational data from the Fokker 70 fleet of KLM Cityhopper (Nayak, 2016).
Sam van Brienen	Data potentials: Scheduling unplanned maintenance of legacy aircraft (ExSyn Aviation Solutions, 2018).
Arjan Francken	Aircraft component failure prediction using unsupervised data mining (ExSyn Aviation Solutions, 2018).
Manon Wientjes	Base maintenance findings risk predictor (ExSyn Aviation Solutions, 2018)
Laurens Scheipens	TUI's aircraft reliability dashboard model (TUI, 2018).
Lorance Helwani	Machine learning and natural language processing in maintenance engineering (Fokker, 2018).
Ruud Jansen	Predicting aircraft speed and altitude profiles on departure (NLR, 2017 (not MRO related)).
Myrthe Dost	Causes of a reduced delivery reliability (RNAF, 2017).



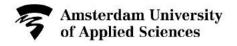
Case studies and student-researchers (2)

Group 6: Other, mostly descriptive and optimization Martijn Bloothoofd Manpower Planning of TUI Engineering and Maintenance (TUI, 2018). Enhancing a predictive aircraft maintenance duration tool by improving the data fetching algorithm and the Nino Mooren implementation of weather data (JetSupport, 2018). Leon de Haan Predictive maintenance in MRO calculation and analysis of Key Performance Indicator Manhours per Flight hour (Jetsupport, 2018). **Britt Bruyns** How A-checks can be improved (KLM Cityhopper, 2018). Doris van der Meer The first steps of the extension of the safety failure data analysis (Prorail, 2017). **Bob** Laarman Exploring expendables for repair development and cost reduction in an MRO environment (KLM, 2017). Emiel van Maurik Post production analysis (Transavia, 2017). Thom van de Engel Maintenance planning optimization (Tec4jets, 2017). **Ruby Weener** Quantification of the possible added value of the CFM56-7B's KLM customized workscope planning guide (KLM E&M, 2017). Jeroen Verheugd The potential of data mining techniques in avionics component maintenance (JetSupport, 2016). Marc Hogerbrug & Julian Data mining in aviation maintenance, repair and overhaul (JetSupport, 2016). Hiraki **Kylian Timmermans** Providing value added services from the digital shadow of MRO logistics providers (Lufthansa LTHS, 2016). Bram Benda & Kaan Koc Data mining in aviation: predictive component reliability (Koninklijke Luchtmacht, 2016.

Contribution of this project to education

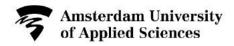
- Input for curriculum: Smart Maintenance modules
- Predictive Maintenance track part of the minor Data Science
- Contribution to Studios Predictive Maintenance en Data Science
- Input for Research Data Management function of Faculty of Technology

AVIATION ACADEMY EDUCATION - RESEARCH - PARTNERSHIPS



We would like to thank SIA for funding this research project

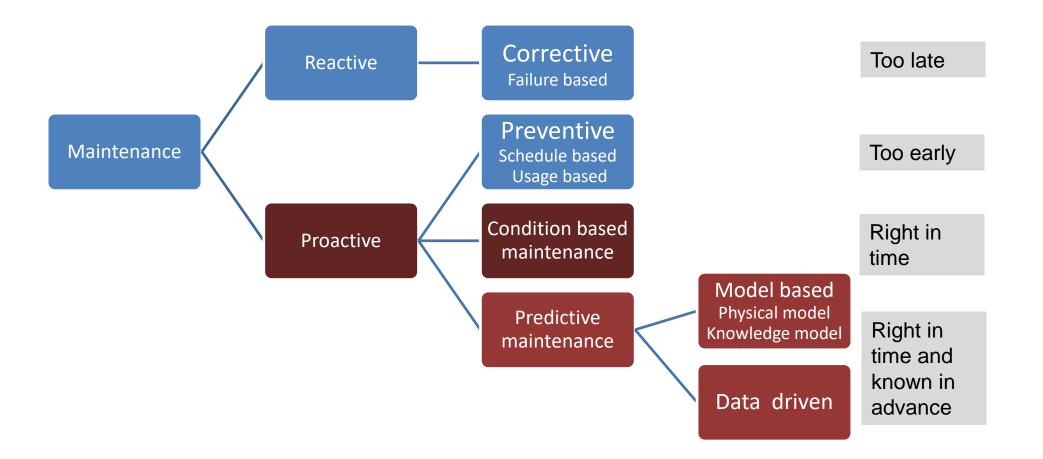
AVIATION ACADEMY EDUCATION - RESEARCH - PARTNERSHIPS



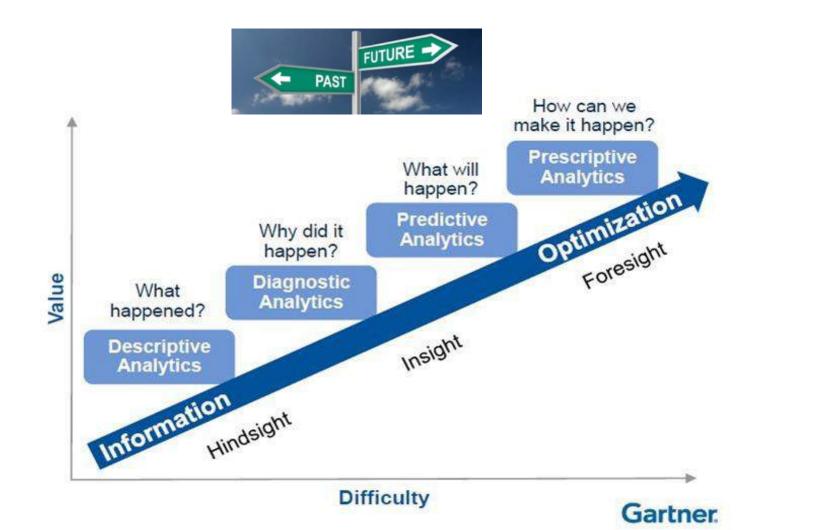
Contents

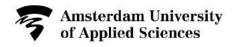
- RAAK project Data Mining in MRO
- Methodology
- Data sources and preparation
- Modelling
- Concluding remarks

Maintenance taxonomy



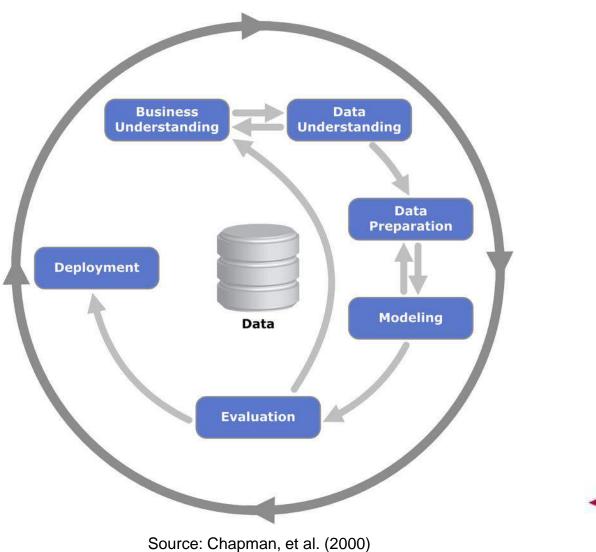
First describe and analyse the past, then predict the future and prescribe actions to be taken

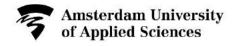




CRISP-DM methodology for Data Mining in MRO

- Data mining: A sequence of steps
- Cross Industry Standard Process for Data Mining methodology: CRISP-DM
- Standard for data mining projects based on practical, real-world experience
- CRISP-DM is the most used data mining method (Piatetsky, 2014)





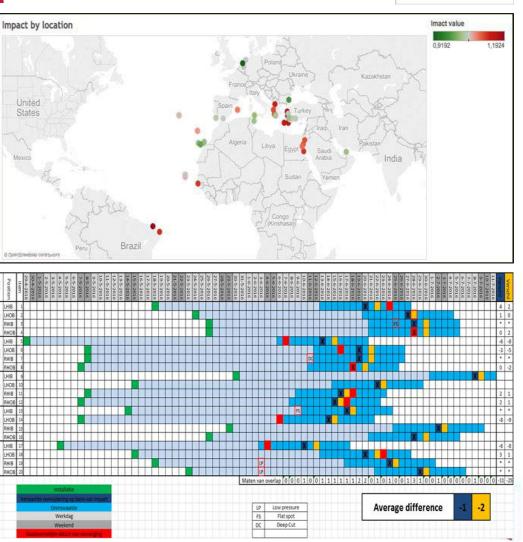
Case: Optimal aircraft tires replacement

Company: Line maintenance and A checks

→ Increase availability and lower maintenance costs

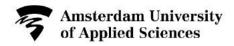
CRISP methodology

Business understanding	Prediction of the remaining useful life time Optimal schedule for tire replacement
Data understanding	AMOS, FDM cycles, weight, braking action, location, runway length and temperature
Data preparation	Cleaning, integration into single dataset
Modelling	Linear regression
Evaluation Deployment	Highest correlation found: tire wear and airport Proof of concept: Prediction of optimal replacement moment



x≣

+++ a ble a u



Contents

- RAAK project Data Mining in MRO
- Methodology
- Data sources and preparation
- Modelling
- Concluding remarks



Who has access to data and/or the rights to use?

Many formats, creators, users, owners of data were found in the case studies

Flight data Maintenance	 Manuals, forms digital or on paper Structured tables in relational databases (e.g. ERP) Free text reports of findings and repair action External data sources in various formats 								
data		or data	ources			5			
External data	Pictures, samples Available data								
		Aircraft				-	OEM		
Stakeholder	Operations data	Health Monit	ERP	MPD	Jobcard	Form	maintenance documentation	External sources	
Airline	CUO	U?	CUO					U?	C: Creator
Aircraft owner	UΟ		U?				U?	U?	U: User
Airworthiness manager (CAMO)	U?		CUO	CUO			U	U?	O: Owner
OEM of aircraft, engine or other		UΟ					СО	U?	
MRO company (Part-145)	U?	U?	CUO	UΟ	CUO	CUO	U	U?	
MRO Support /tooling		U?	CUO	UΟ	CUO	CUO	U	U?	19

Data preparation to clean and construct the final datasets from the initial raw data

- Deal with imperfect and incomplete data
- Clean, integrate, format and verify
- Often tedious, time consuming

Missing values Outliers Datasets not accessible, not available Datasets incomplete Data interpretation variability Errors in values

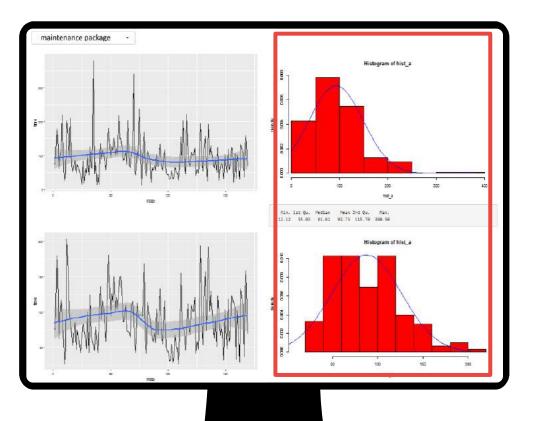
	Cleaning steps	Construct data	Integrate data	Transform data	Reduce data
Software developer	Remove duplicates; Remove false malfunctions	Yes	Yes	Yes	No
MRO company 1 a	Remove errors; Fill empty cells; Remove empty cells;	Yes	Yes	Yes	Yes
	Outliner removal; Remove irrelevant data				
MRO company 1 b	Remove irrelevant data	Yes	Yes	Yes	No
MRO company 1 c	Correct errors; Fill empty cells; Remove empty cells	Yes	No	Yes	No
Airline MRO 2	-	Yes	No	Yes	Yes
MRO company 2	Correct errors; Fill empty cells; Outliner removal	Yes	Yes	Yes	No
In house MRO	Remove errors; Fill empty cells; Remove irrelevant data	Yes	Yes	Yes	No
MRO company 3	Remove errors; Fill empty cells; Remove empty cells	Yes	Yes	Yes	Yes

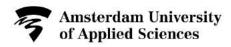
Case: Maintenance duration prediction

A predictive maintenance tool with reasonable accurate predicted maintenance tasks duration with automated selection of the:

- 1. Best fitting statistical distribution
- 2. Best performing time series forecasting model

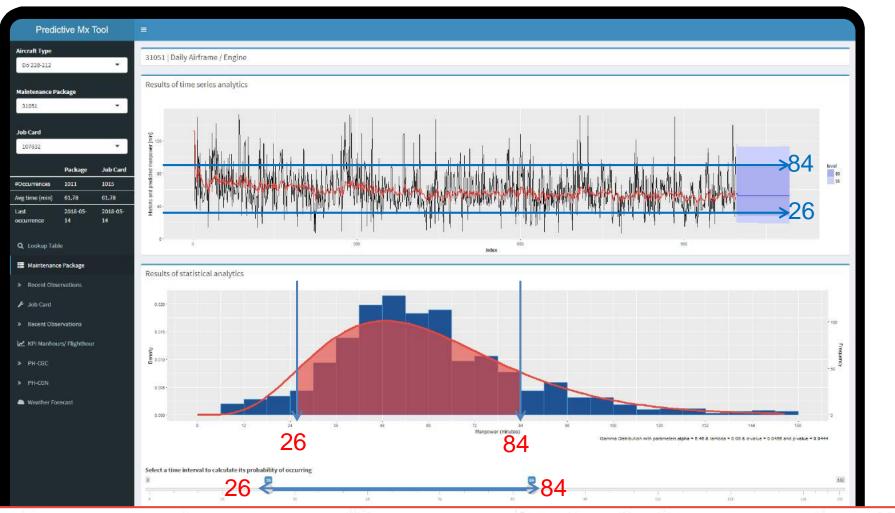
For every maintenance package and/or job card of any aircraft type





17

Predictive Maintenance Tool dashboard



R

The probability of maintenance package 31051 requiring manpower for a duration between 26 and 84 minutes is 77.7 %

Contents

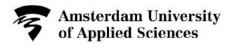
- RAAK project Data Mining in MRO
- Methodology
- Data sources and preparation
- Modelling
- Concluding remarks



The 28 case studies can be divided in 3 groups of data mining approaches

Visualization	 Descriptive analytics using established math and graphical methods, resulting in outputs such as KPI's control charts, management dashboards
Statistical data mining	 Descriptive and predictive analytics using established statistical methods, such as probability calculation, correlation and time series forcasting
Machine Learning	 Predictive analytics using machine learning methods such as regression, classification and clustering

24



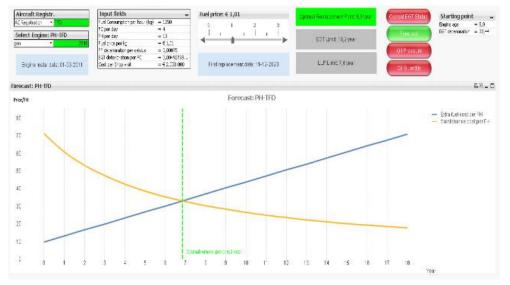
Case: Engine Health Monitoring with data that are available for Airlines

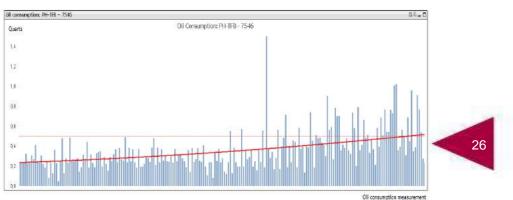
Inflight data from aircraft engines are sent to the manufacturer only

→ Improve maintenance efficiency using free available data

CRISP methodology

07				
Business understanding	Economic Replacement Point (ERP), Life Limiting Parts (LLP) and Exhaust Gas Temperature (EGT) define the optimal replacement time of engines			
Data understanding	Available data: EGT, fuel consumption, oil pressure and oil consumption			
Data preparation	Select engine type Clean and check data			
Modelling	Develop Engine Health Monitoring model Forecast optimal engine replacement point			
Evaluation Deployment	Aircraft uptime ↑, Part costs↓ EGT & LLP limits reached sooner than ERP			





Case: Causes of low fleet availability in high season

A/B-checks and line maintenance for Airline fleet

→ Causes of drop in Fleet Availability during high season

CRISP methodologyBusiness
understandingPerformance contract: aircraft uptime
Correlate ATA (sub)chapter to problemsDataAMOS weather data flight data

Evaluation

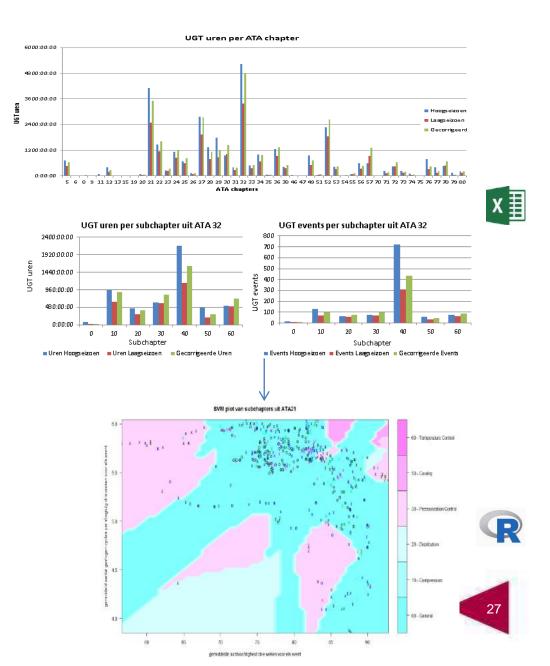
Deployment

Data understanding AMOS, weather data, flight data, unscheduled ground time events

Data preparation Cleaned and integrated

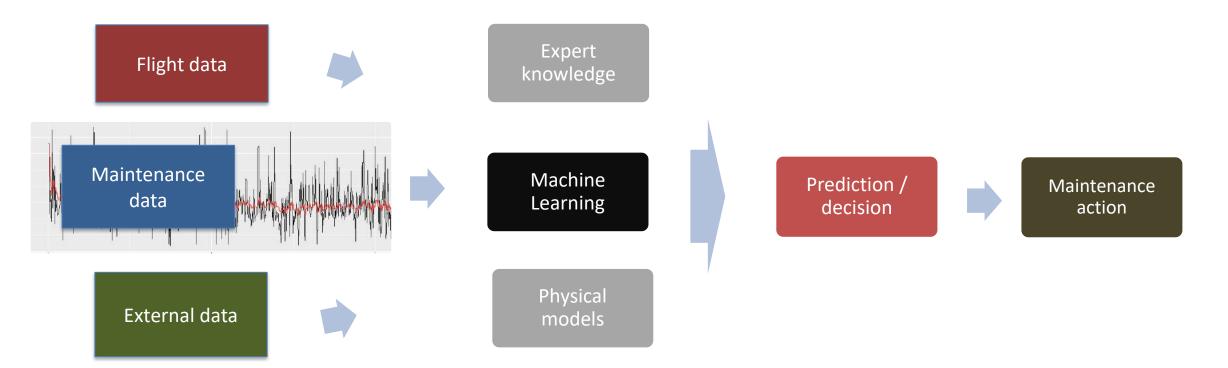
Modelling Descriptive analysis: highest unplanned ground time Support Vector Machine to predict problems related to weather

Aircraft uptime ↑, part costs↓
Performance drop correlated to ATA subchapter, e.g. tyres, brakes and cabin air quality

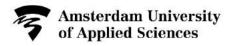




In this research other data sources and machine learning were added to overcome the prediction limitations of statistics on MRO datasets



Machine learning methods process many parameters and data types Determine the parameters that strongly influence the output Include the data of healthy systems



Case: Text mining to analyze maintenance reports

Use historical work order summary reports to trigger alerts if a failure or repair occurs more often than usual

Show similar failures or repairs from the past to support investigations

CRISP methodology

Data

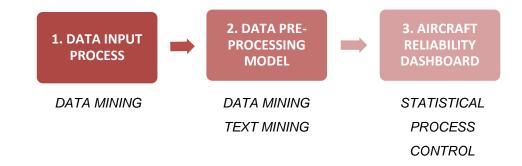
Business understanding	Improve TAT and reduce maintenance costs if failures			
	and solutions are known in an earlier stage			

AMOS database: Work order summary reports and understanding additional aircraft data

Data preparation Retrieved and checked

Modelling Chi Squared Distance Function and K-Nearest Neighbours method to classify report text Present results in Reliability Dashboard

Evaluation Accuracy score 75,5%. With human control Deployment (reinforcement): 77,5%



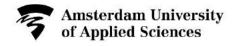
Amsterdam University of Applied Sciences

Case: Choose the best performing machine learning algorithm to predict unplanned maintenance tasks ROC curves

CRISP method	ology	Best performing
Business understanding Data understanding	 Predict unplanned maintenance tasks i.e. failures of components Maintenance database: 600.000 task instances Parameters: task type, operator, aircraft type, age, 	Sensitivity
Data preparation	flight hours, cycles, engine type, location, finding Select test task type with 120 instances and 50/50 chance of failure	0.0
Modelling	Compare prediction accuracy of 7 machine learning algorithms Optimize parameters	1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 Specificity Pogačnik's algorithm Linear support vector machine
Evaluation Deployment	Prediction accuracy too low for this task Additional data needed from e.g. weather, sensors, data sharing or synthetic data	Maive Bayes Random uniform forest Logistic regression

0

7



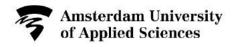
Software applied in Data Mining in MRO

Open source software

- Large user community, need to employ a data scientist
- R
- Python

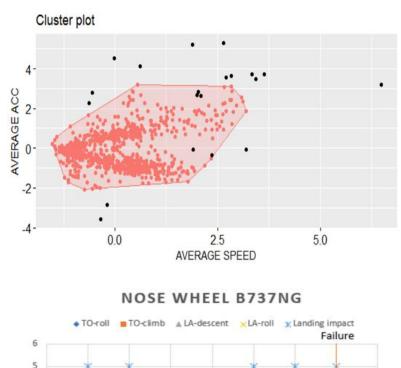
Commercial software

- Matlab
- IBM SPSS
- Tableau
- Microsoft Azure
- Exsyn: Aviation Analytics



Case : Predict aircraft component failures model using external data sources for flight path and weather

CRISP methodology				
Business understanding	Predict failures of components that possibly relate to flight path and/or weather anomalies			
Data understanding	Maintenance data, ADS-B data (Flightradar24), weather data (NCEI)			
Data preparation	Select from maintenance data a test component: Nose wheel Calculate acceleration forces from ADS-B data			
Modelling	Dimensionality reduction Apply K-means and DBSCAN machine learning techniques to detect flight anomalies Correlate flight anomalies and nose wheel failures			
Evaluation Deployment	Proof of concept: (Weak) correlation found			



17-7-201618-7-201619-7-201620-7-201621-7-201622-7-201623-7-201624-7-201625-7-2016

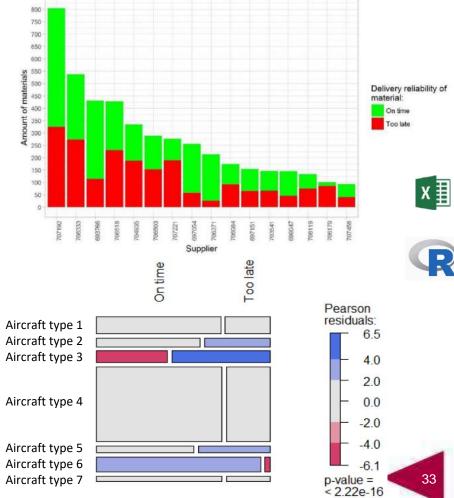
2

32

Case : Causes of a reduced delivery reliability in aircraft component maintenance

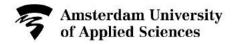
CRISP methodology

Business understanding	Explain the causes of the low delivery reliability of component maintenance (between 49% and 97%)
Data understanding	Maintenance database, parameters: Delivery reliability, group, priority, maintenance type, order type, work centers, supplier and materials, execution status, actual costs, added value, planned and actual worked hours, planned and actual TAT
Data preparation	Retrieved and checked on year of data from SAP maintenance management system
Modelling	Examined the relationship between delivery reliability and 13 selected parameters. Data visualization e.g. mosaic plot. Statistics e.g. chi-squared. Machine learning (Decision tree) to predict delivery performance of parts.
Evaluation Deployment	Pilot project proved to successful. Main causes identified.



Contents

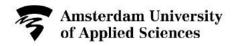
- RAAK project Data Mining in MRO
- Methodology
- Data sources and preparation
- Modelling
- Concluding remarks



Conclusions

Research objective: How can SME MRO's use fragmented historical maintenance data to decrease maintenance costs and aircraft downtime?

- Case studies proved the value of statistical and machine learning methods (proof of concept)
 - Aircraft uptime: optimal and accurate planning
 - MRO costs: efficiency, part costs
- CRISP-DM methodology useful
- Confidentiality and data ownership issues
- Visualization already proved to be very useful for companies
- Databases designed for compliance not analysis
- Data preparation much work
- Selection of appropriate algorithms need expert knowledge



Recommendations from the Data Mining in MRO research

Strategy

- Include data mining in the company's strategy
- Assess the current maturity level in data mining
- Start with focused applications that target real problems
- Set data mining performance goals

People

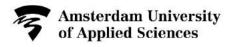
- Introduce data scientists
- Minimize the risk of unlawful or unwanted data sharing
- Provide on-the-job information to mechanics
- Organize close interaction between (academic) data scientists and shop floor mechanics

Process

- First visualization, then diagnostics, then prediction
- Combine data driven-models with expert and failure models
- Negotiate with OEMs and asset owners about access to data

ICT

- Increase data volume with (automated)
 maintenance reporting and sensors
- Modernize ICT to support data driven approach
- Investigate methods that deal with small datasets and open source data



Tip: Predictive Maintenance / Data Mining in MRO binnenkort te beluisteren in een podcast van de Dataloog (Jurjen Helmus en Lex Knape interviewen Sander de Bree (Exsyn) en Maurice Pelt)

de DATALOOG

www.dedataloog.nl

UITZENDING

DTL018 – de kansen van de privacy wetgeving

DTL018 – de kansen van de privacy wetgeving De AVG wetgeving, we hebben het er al eens vaker over gehad. Dit blijft een heet hangijzer nu AVG en GDPR een jaar actief zijn. Daarnaast is... Read More

Thank you for your attention

Maurice Pelt <u>m.m.j.m.pelt@hva.nl</u>

www.international.hva.nl